Network Plugins
Kubernetes v1.18
alpha
- The version names contain alpha (e.g. v1alpha1).
- Might be buggy. Enabling the feature may expose bugs. Disabled by default.
- Support for feature may be dropped at any time without notice.
- The API may change in incompatible ways in a later software release without notice.
- Recommended for use only in short-lived testing clusters, due to increased risk of bugs and lack of long-term support.
Caution: Alpha features can change rapidly.
Network plugins in Kubernetes come in a few flavors:
- CNI plugins: adhere to the appc/CNI specification, designed for interoperability.
- Kubenet plugin: implements basic
cbr0
using thebridge
andhost-local
CNI plugins
Installation
The kubelet has a single default network plugin, and a default network common to the entire cluster. It probes for plugins when it starts up, remembers what it finds, and executes the selected plugin at appropriate times in the pod lifecycle (this is only true for Docker, as rkt manages its own CNI plugins). There are two Kubelet command line parameters to keep in mind when using plugins:
cni-bin-dir
: Kubelet probes this directory for plugins on startupnetwork-plugin
: The network plugin to use fromcni-bin-dir
. It must match the name reported by a plugin probed from the plugin directory. For CNI plugins, this is simply “cni”.
Network Plugin Requirements
Besides providing the NetworkPlugin
interface to configure and clean up pod networking, the plugin may also need specific support for kube-proxy. The iptables proxy obviously depends on iptables, and the plugin may need to ensure that container traffic is made available to iptables. For example, if the plugin connects containers to a Linux bridge, the plugin must set the net/bridge/bridge-nf-call-iptables
sysctl to 1
to ensure that the iptables proxy functions correctly. If the plugin does not use a Linux bridge (but instead something like Open vSwitch or some other mechanism) it should ensure container traffic is appropriately routed for the proxy.
By default if no kubelet network plugin is specified, the noop
plugin is used, which sets net/bridge/bridge-nf-call-iptables=1
to ensure simple configurations (like Docker with a bridge) work correctly with the iptables proxy.
CNI
The CNI plugin is selected by passing Kubelet the --network-plugin=cni
command-line option. Kubelet reads a file from --cni-conf-dir
(default /etc/cni/net.d
) and uses the CNI configuration from that file to set up each pod’s network. The CNI configuration file must match the CNI specification, and any required CNI plugins referenced by the configuration must be present in --cni-bin-dir
(default /opt/cni/bin
).
If there are multiple CNI configuration files in the directory, the kubelet uses the configuration file that comes first by name in lexicographic order.
In addition to the CNI plugin specified by the configuration file, Kubernetes requires the standard CNI lo
plugin, at minimum version 0.2.0
Support hostPort
The CNI networking plugin supports hostPort
. You can use the official portmap
plugin offered by the CNI plugin team or use your own plugin with portMapping functionality.
If you want to enable hostPort
support, you must specify portMappings capability
in your cni-conf-dir
.
For example:
{
"name": "k8s-pod-network",
"cniVersion": "0.3.0",
"plugins": [
{
"type": "calico",
"log_level": "info",
"datastore_type": "kubernetes",
"nodename": "127.0.0.1",
"ipam": {
"type": "host-local",
"subnet": "usePodCidr"
},
"policy": {
"type": "k8s"
},
"kubernetes": {
"kubeconfig": "/etc/cni/net.d/calico-kubeconfig"
}
},
{
"type": "portmap",
"capabilities": {"portMappings": true}
}
]
}
Support traffic shaping
The CNI networking plugin also supports pod ingress and egress traffic shaping. You can use the official bandwidth plugin offered by the CNI plugin team or use your own plugin with bandwidth control functionality.
If you want to enable traffic shaping support, you must add a bandwidth
plugin to your CNI configuration file
(default /etc/cni/net.d
).
{
"name": "k8s-pod-network",
"cniVersion": "0.3.0",
"plugins": [
{
"type": "calico",
"log_level": "info",
"datastore_type": "kubernetes",
"nodename": "127.0.0.1",
"ipam": {
"type": "host-local",
"subnet": "usePodCidr"
},
"policy": {
"type": "k8s"
},
"kubernetes": {
"kubeconfig": "/etc/cni/net.d/calico-kubeconfig"
}
},
{
"type": "bandwidth",
"capabilities": {"bandwidth": true}
}
]
}
Now you can add the kubernetes.io/ingress-bandwidth
and kubernetes.io/egress-bandwidth
annotations to your pod.
For example:
apiVersion: v1
kind: Pod
metadata:
annotations:
kubernetes.io/ingress-bandwidth: 1M
kubernetes.io/egress-bandwidth: 1M
...
kubenet
Kubenet is a very basic, simple network plugin, on Linux only. It does not, of itself, implement more advanced features like cross-node networking or network policy. It is typically used together with a cloud provider that sets up routing rules for communication between nodes, or in single-node environments.
Kubenet creates a Linux bridge named cbr0
and creates a veth pair for each pod with the host end of each pair connected to cbr0
. The pod end of the pair is assigned an IP address allocated from a range assigned to the node either through configuration or by the controller-manager. cbr0
is assigned an MTU matching the smallest MTU of an enabled normal interface on the host.
The plugin requires a few things:
- The standard CNI
bridge
,lo
andhost-local
plugins are required, at minimum version 0.2.0. Kubenet will first search for them in/opt/cni/bin
. Specifycni-bin-dir
to supply additional search path. The first found match will take effect. - Kubelet must be run with the
--network-plugin=kubenet
argument to enable the plugin - Kubelet should also be run with the
--non-masquerade-cidr=<clusterCidr>
argument to ensure traffic to IPs outside this range will use IP masquerade. - The node must be assigned an IP subnet through either the
--pod-cidr
kubelet command-line option or the--allocate-node-cidrs=true --cluster-cidr=<cidr>
controller-manager command-line options.
Customizing the MTU (with kubenet)
The MTU should always be configured correctly to get the best networking performance. Network plugins will usually try to infer a sensible MTU, but sometimes the logic will not result in an optimal MTU. For example, if the Docker bridge or another interface has a small MTU, kubenet will currently select that MTU. Or if you are using IPSEC encapsulation, the MTU must be reduced, and this calculation is out-of-scope for most network plugins.
Where needed, you can specify the MTU explicitly with the network-plugin-mtu
kubelet option. For example,
on AWS the eth0
MTU is typically 9001, so you might specify --network-plugin-mtu=9001
. If you’re using IPSEC you
might reduce it to allow for encapsulation overhead; for example: --network-plugin-mtu=8873
.
This option is provided to the network-plugin; currently only kubenet supports network-plugin-mtu
.
Usage Summary
--network-plugin=cni
specifies that we use thecni
network plugin with actual CNI plugin binaries located in--cni-bin-dir
(default/opt/cni/bin
) and CNI plugin configuration located in--cni-conf-dir
(default/etc/cni/net.d
).--network-plugin=kubenet
specifies that we use thekubenet
network plugin with CNIbridge
andhost-local
plugins placed in/opt/cni/bin
orcni-bin-dir
.--network-plugin-mtu=9001
specifies the MTU to use, currently only used by thekubenet
network plugin.
Feedback
Was this page helpful?
Thanks for the feedback. If you have a specific, answerable question about how to use Kubernetes, ask it on Stack Overflow. Open an issue in the GitHub repo if you want to report a problem or suggest an improvement.