리소스 모니터링 도구
애플리케이션을 스케일하여 신뢰할 수 있는 서비스를 제공하려면, 애플리케이션이 배포되었을 때 애플리케이션이 어떻게 동작하는지를 이해해야 한다. 컨테이너, 파드, 서비스, 그리고 전체 클러스터의 특성을 검사하여 쿠버네티스 클러스터 내의 애플리케이션 성능을 검사할 수 있다. 쿠버네티스는 각 레벨에서 애플리케이션의 리소스 사용량에 대한 상세 정보를 제공한다. 이 정보는 애플리케이션의 성능을 평가하고 병목 현상을 제거하여 전체 성능을 향상할 수 있게 해준다.
쿠버네티스에서 애플리케이션 모니터링은 단일 모니터링 솔루션에 의존하지 않는다. 신규 클러스터에서는, 리소스 메트릭 또는 완전한 메트릭 파이프라인 파이프라인으로 모니터링 통계를 수집할 수 있다.
리소스 메트릭 파이프라인
리소스 메트릭 파이프라인은
Horizontal Pod Autoscaler
컨트롤러와 같은 클러스터 구성요소나 kubectl top
유틸리티에 관련되어 있는
메트릭들로 제한된 집합을 제공한다. 이 메트릭은 경량의 단기 인메모리 저장소인
metrics-server에
의해서 수집되며 metrics.k8s.io
API를 통해 노출된다.
metrics-server는 클러스터 상의 모든 노드를 발견하고 각 노드의
Kubelet에 CPU와 메모리
사용량을 질의한다. Kubelet은 쿠버네티스 마스터와 노드 간의 다리 역할을 해서
머신에서 구동되는 파드와 컨테이너를 관리한다. Kubelet은 각각의 파드를 해당하는
컨테이너로 변환하고 컨테이너 런타임 인터페이스를 통해서 컨테이너 런타임에서
개별 컨테이너의 사용량 통계를 가져온다. Kubelet은 이 정보를 레거시 도커와의
통합을 위해 kubelet에 통합된 cAdvisor를 통해 가져온다. 그 다음으로 취합된 파드
리소스 사용량 통계를 metric-server 리소스 메트릭 API를 통해 노출한다. 이 API는
kubelet의 인증이 필요한 읽기 전용 포트 상의 /metrics/resource/v1beta1
에서
제공된다.
완전한 메트릭 파이프라인
완전한 메트릭 파이프라인은 보다 풍부한 메트릭에 접근할 수 있도록 해준다.
쿠버네티스는 Horizontal Pod Autoscaler와 같은 메커니즘을 활용해서 이런 메트릭에
대한 반응으로 클러스터의 현재 상태를 기반으로 자동으로 스케일링하거나 클러스터를
조정할 수 있다. 모니터링 파이프라인은 kubelet에서 메트릭을 가져와서 쿠버네티스에
custom.metrics.k8s.io
와 external.metrics.k8s.io
API를 구현한 어댑터를 통해
노출한다.
CNCF 프로젝트인, 프로메테우스는 기본적으로 쿠버네티스, 노드, 프로메테우스 자체를 모니터링할 수 있다. CNCF 프로젝트가 아닌 완전한 메트릭 파이프라인 프로젝트는 쿠버네티스 문서의 범위가 아니다.
피드백
이 페이지가 도움이 되었나요?
피드백 감사합니다. 쿠버네티스 사용 방법에 대해서 구체적이고 답변 가능한 질문이 있다면, 다음 링크에서 질문하십시오. Stack Overflow. 원한다면 GitHub 리포지터리에 이슈를 열어서 문제 리포트 또는 개선 제안이 가능합니다..